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Abstract. Normal ordering of powers of the bosonic number operator can be used to define
a discrete probability distribution associated with the number of elements of a random set. We
represent these random sets by vectors in a Hilbert space and obtainq-bosons.

The connection between the Stirling numbers [1] and the normal ordering of the quantum
operators has been widely investigated. Recently,q deformation of the same problem in
connection with quantum groups has attracted much attention. Derivation of theq deformed
versions of combinatorial identities [2] and ofq deformed bosons [3] are extensively studied.
Stirling numbers are defined through the expansion formula:

Mn =
n∑

m=0

SnmM(M − 1) · · · (M −m+ 1). (1)

In this expansion the coefficientsSnm are called the Stirling numbers of the second kind.
They have a recurrence relation given by:

Snm = m Sn−1
m + Sn−1

m−1. (2)

These coefficients have the properties

Snm > 0

Snm = 0 iff n < m

Sn0 = δn0.
(3)

These properties together with (1) motivate us to define a probability function which we
will call the Stirling probability distribution.

Pnm = Snm
M!

(M −m)!
1

Mn
. (4)

The normalization condition(
∑

m P
n
m = 1) of the Stirling probability is identically satisfied

using the defining equation (1) of Stirling numbers. The probability distribution defined in
(4), through purely algebraic steps, turns out to be useful in physics when applied to some
interesting problems, such asq deformations and normal ordering.

To see the close connection with other subjects, let us define the same probability using
the random set concept. Random sets are only distinguished by the property of having
been built from another set or another random set in a given number of steps. We start
with an infinite set� of bosons. All the bosons are considered to be identical but they
can be counted in accordance with the usual physical principles. This implies that these
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identical bosons must have another attribute, that we call metacolour, which is assumed to
be different for all bosons in the infinite source set�. We consider a setA made from
� in N steps, by adding at each step a copy of a random element of� to A. The setA
will have exactlyM = N bosons since the probability of choosing the same element twice
from an infinite set is zero. Hence the setA becomes a finite set ofN elements which we
identify with a set ofN identical bosons.

In quantum mechanics, this set is described by a vector|N〉 and associated with it are
the annihilation, creation and number operatorsa, a† andN̂ which satisfy:

N̂ |N〉 = N |N〉
a†|N〉 = αN |N + 1〉
N̂ = a†a.

(5)

We identifya† with the operation of choosing an element from the source set� and putting
a copy of it into the setA. It can be shown that operators in (5) satisfy:

aa† − a†a = 1

aN̂ = (N̂ + 1)a. (6)

We now consider another setB made from the finite setA, in n steps. (Note that the
elements inA are all identical bosons except their metacolour which counts the cardinality
M = N of this set.) In each step, a copy of an element randomly chosen fromA is put
into B if it does not already exist inB. If a boson of the same metacolour already exists in
B, the number of elements inB does not increase. Mathematically speaking this amounts
to choosing a random subset ofA of cardinality one and taking its union withB. Starting
from a finite set ofM elements the probability of havingm elements inB after n steps
will be denoted byPMn,m. Using a simple reasoning, this probability can be defined in the
following recursive way

PM,nm =
(m
M

)
PM,m−1
m +

(
1− m− 1

M

)
P
M,n−1
m−1 . (7)

This indeed yields the Stirling probability in (4). A schematic view of the above discussion
is given in figure 1. Asa† was the creation operator for the setA, we defineb† as the same
for the random setB. The number operatora†a gives the number of elements inA, thus

M̂ = a†a. (8)

Figure 1. The infinite source set�, the finite setA and the random setB.
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Since the source set ofA has infinite number of elements, the commutation relation
betweena anda† can be written as:

aa† = a†a + 1. (9)

The average number of elements inB after n steps can also be easily computed:

〈m〉 ≡
n∑

m=0

mPnm =
1− qn
1− q = [n]q (10)

which turns out to be a Jackson [4] basic number, where

q ≡ 1− 1

M
q̂ = 1− (a†a)−1

. (11)

q̂ is defined only if the setA is not null.
Before proceeding to investigate the properties of the operator algebra ofa andb , let

us see the connection of this problem with normal ordering of quantum operators. We start
with an oscillator algebra with lowering and raising operatorsa and a†. If we want to
express thenth power of the number operatora†a as a normal ordered expansion, we can
write:

(a†a)n =
n∑

m=0

Snm(a
†)m(a)m. (12)

Multiplying this equation bya†a from the right-hand side and using the commutation relation
between the creation and annihilation operators, we obtain a recurrence relation forSnm,
which turns out to be (2). Formula (1) becomes the matrix element of (12) obtained by
taking the expectation value in the state|M〉.

The parameterq defined in (12) appears naturally in the commutation relation between
b andb† [5]:

bb† = qb†b + 1. (13)

This is the q-oscillator [10] algebra which leads to the quantum group [11]Uq(d) by
consideringd random sets made fromA whose union givesB [5]. Then the number
operator for the quantized random setB becomes

m̂ = b†b (14)

whose eigenvalues are the average number of elements inB.
After setting a proper algorithm to ‘quantize’ the finite sets, we can go one step further

and ‘second quantize’ the random setB to obtain a new set that we will callC. This new

Figure 2. Second quantization of the finite setA.
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set will be formed fromB using the probability functionP̃ and we will havem′ elements
after n′ steps. This is illustrated in figure 2. Unfortunately, the algorithm to defineP̃

is not unique. One method is to define this probability through theq-oscillator algebra’s
commutation relation of the source set ofC, since the Stirling probabilityPMn,m, could also
be defined using (9) and (7). Thus we can write

(b†b)n =
n∑

m=0

S̃nm(b
†)m(b)m (15)

to defineq Stirling numbers of the second kind. These numbers were first introduced in
1933 [6] and extensively studied by various authors [7–9]. We will use (13) to find the
recurrence relation concerning̃S as

S̃n,m = qm−1S̃n−1,m−1+ [m]S̃n−1,m (16)

which permits us to definẽP as:

P̃
n,m
n′,m′ = S̃n

′
m′

[n]!

[n−m′]![ n]n
′ . (17)

Using this probability distribution we can calculate the average number of elements inC.
An alternative method to this approach is to define the probability of havingm′ elements

in the setC similar to the probability of havingm elements in the setB. Then the final
probability can be written as a summation containing these two probabilities:

P̃
M,n,n′
m′ ≡

∑
m

PM,nm P
m,n′
m′ . (18)

This is the classical probability of havingm′ elements in setC which is obtained by starting
with setA of M elements and forming setB in n steps by choosing elements fromA and
then forming setC in n′ steps by choosing elements fromB.

This new definition gives us a new mean value for the number of elements inC. If we
first evaluate the summation overm′ we obtain:

〈m′〉 ≡
∑
m′
m′P̃ M,n,n

′
m′ =

∑
m

PM,nm

1− q(m)n′
1− q(m) (19)

which is clearly the average of the basic numbern′ with parameterq as a function ofm.
If we approximate the average of a function by the function of the average we obtain for
the average number of elements inC

〈m′〉 =
〈

1− q(m)n′
1− q(m)

〉
≈ 1− q(〈m〉)n′

1− q(〈m〉) =
1− q̃n′
1− q̃ (20)

where

q̃ ≡ q(〈m〉) = 1− 1

〈m〉 = 1− 1

[n]q
. (21)

This last expression for the average number of elements inC gives different results compared
with the values calculated using (17). But note that both expressions converge to the same
values in theq = 1 (N = ∞) limit. The advantage of (20) and (21) is that second generation
random sets may again be described byq-oscillators which generate Jackson basic numbers
for the average number of elements.

In this work we have discussed the relationship between theq-oscillators [10] and
Uq(d) quantum groups [11] using the random set concept. We have seen that association of
vectors in a Hilbert space with the random sets, yields a new property ofq-bosons, that we
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call metacolour. Metacolour permits us to count the identicalq-bosons and other bosons
which correspond toq = 1. On the other hand, for the random or quantized random sets,
state vectors are defined by the number of steps used to construct this set rather than the
uncertain number of elements in this set. Furthermore, the vectors corresponding to sets
constructed in different number of steps are orthogonal. This probabilistic view is different
from the classical definition of a state according to the final number of particles in that
state. Since the concept of quantizing the random sets is rather general, we cannot define
a unique procedure for second and further generation of random sets. However, note that
the procedure defined by (19) and (20) gives a simple and unique answer. We believe that
the properties ofq-bosons related to the metacolour and probability concepts are interesting
and worth deeper investigation.
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