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Abstract. Normal ordering of powers of the bosonic number operator can be used to define
a discrete probability distribution associated with the number of elements of a random set. We
represent these random sets by vectors in a Hilbert space and gktasons.

The connection between the Stirling numbers [1] and the normal ordering of the quantum
operators has been widely investigated. Recentlgeformation of the same problem in
connection with quantum groups has attracted much attention. Derivation gfdétermed
versions of combinatorial identities [2] and ¢fleformed bosons [3] are extensively studied.
Stirling numbers are defined through the expansion formula:

Mﬂ:ZanM(M—l)--.(M—erl). (1)
m=0
In this expansion the coefficient§, are called the Stirling numbers of the second kind.
They have a recurrence relation given by:

St =m Sty %)
These coefficients have the properties

Sh =0

S =0 iff n <m 3)

S5 = 685-

These properties together with (1) motivate us to define a probability function which we
will call the Stirling probability distribution.

o ML @
m (M —m)! M"

The normalization conditio) _,, P = 1) of the Stirling probability is identically satisfied

using the defining equation (1) of Stirling numbers. The probability distribution defined in

(4), through purely algebraic steps, turns out to be useful in physics when applied to some

interesting problems, such gsdeformations and normal ordering.

To see the close connection with other subjects, let us define the same probability using
the random set concept. Random sets are only distinguished by the property of having
been built from another set or another random set in a given number of steps. We start
with an infinite set® of bosons. All the bosons are considered to be identical but they
can be counted in accordance with the usual physical principles. This implies that these
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identical bosons must have another attribute, that we call metacolour, which is assumed to
be different for all bosons in the infinite source s&t We consider a seft made from
Q in N steps, by adding at each step a copy of a random elemefattof A. The setA
will have exactlyM = N bosons since the probability of choosing the same element twice
from an infinite set is zero. Hence the setecomes a finite set af elements which we
identify with a set ofN identical bosons.

In quantum mechanics, this set is described by a vgafdorand associated with it are
the annihilation, creation and number operatora’ and N which satisfy:

NIN) = N|N)
a'IN) = ay|N + 1) (5)
N =a'a.

We identifya® with the operation of choosing an element from the sourc&sand putting
a copy of it into the sefd. It can be shown that operators in (5) satisfy:

aa' —ata=1
aN = (N + 1)a. (6)

We now consider another s@& made from the finite sefi, in n steps. (Note that the
elements inA are all identical bosons except their metacolour which counts the cardinality
M = N of this set.) In each step, a copy of an element randomly chosen Arasnput

into B if it does not already exist iB. If a boson of the same metacolour already exists in
B, the number of elements iR does not increase. Mathematically speaking this amounts
to choosing a random subset afof cardinality one and taking its union witB. Starting

from a finite set ofM elements the probability of having elements inB after n steps

will be denoted byPn/‘?m. Using a simple reasoning, this probability can be defined in the
following recursive way

Mn _ ﬁ M,m—1 _ m__l M,n—1
P = (32) B +<1 - )Pml : 7)

This indeed yields the Stirling probability in (4). A schematic view of the above discussion
is given in figure 1. As:" was the creation operator for the sgtwe defineb’ as the same
for the random seB. The number operatat’a gives the number of elements iy thus

M =ala. ®)

© elements

Figure 1. The infinite source se®, the finite setA and the random se&.
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Since the source set of has infinite number of elements, the commutation relation
betweernz anda' can be written as:

aat =dla + 1. %)
The average number of elementsBnaftern steps can also be easily computed:
n " 1 _ qn
(my=> "mPp = 1 =[n], (10)
m=0 -9
which turns out to be a Jackson [4] basic humber, where
1 _
g=1-- G=1-('a) ™. (11)

q is defined only if the sed is not null.

Before proceeding to investigate the properties of the operator algelbramd b |, let
us see the connection of this problem with normal ordering of quantum operators. We start
with an oscillator algebra with lowering and raising operaterand af. If we want to
express theith power of the number operatafa as a normal ordered expansion, we can
write:

(@'a)" = Spa)"@". (12)
m=0

Multiplying this equation by:'a from the right-hand side and using the commutation relation
between the creation and annihilation operators, we obtain a recurrence relatisf), for
which turns out to be (2). Formula (1) becomes the matrix element of (12) obtained by
taking the expectation value in the stéid).

The parametey defined in (12) appears naturally in the commutation relation between
b andb' [5]:

bb' = gb'b + 1. (13)

This is the g-oscillator [10] algebra which leads to the quantum group [}]d) by
consideringd random sets made fromd whose union givesB [5]. Then the number
operator for the quantized random setbecomes

m=b'b (14)
whose eigenvalues are the average number of elemer#ts in

After setting a proper algorithm to ‘quantize’ the finite sets, we can go one step further
and ‘second quantize’ the random geto obtain a new set that we will cadl. This new

©  elements

Figure 2. Second quantization of the finite sét
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set will be formed fromB using the probability functior® and we will haven’ elements

after n’ steps. This is illustrated in figure 2. Unfortunately, the algorithm to define
is not unique. One method is to define this probability throughgthescillator algebra’s

commutation relation of the source set®f since the Stirling probablllthM could also

be defined using (9) and (7). Thus we can write

b'by" = ZS" ®)" (b)" (15)
m=0
to defineg Stirling numbers of the second kind. These numbers were first introduced in
1933 [6] and extensively studied by various authors [7-9]. We will use (13) to find the
recurrence relation concernirfjas

Sn,m = qmilgn—l,m—l + [m]gn—l,m (16)
which permits us to defin@ as:
I
P:;'Z _ Sn [n]
[n —m][n]""
Using this probability distribution we can calculate the average number of elemefits in
An alternative method to this approach is to define the probability of haxirejements

in the setC similar to the probability of having: elements in the seB. Then the final
probability can be written as a summation containing these two probabilities:

Mnn ZPMann (18)

(17)

This is the classical probability of having' elements in se€ which is obtained by starting
with setA of M elements and forming sét in n steps by choosing elements frafnand
then forming seCC in n’ steps by choosing elements frabn

This new definition gives us a new mean value for the number of elemegts ihwe
first evaluate the summation over we obtain:

- , 1— n'
)= Y m B = 3 e L (19
/ 1—¢q(m)

m

which is clearly the average of the basic numbewith parametel; as a function ofn.
If we approximate the average of a function by the function of the average we obtain for
the average number of elementsdn

o) — <1—q(m>" >% 1—q(m)” _1-§" (20)

1—q(m) 1—q((m)) 1-¢q

where
G=q(m)=1-—=1-—_—. (21)

This last expression for the average number of elemer@sgives different results compared
with the values calculated using (17). But note that both expressions converge to the same
values inthey = 1 (N = o0) limit. The advantage of (20) and (21) is that second generation
random sets may again be described;byscillators which generate Jackson basic humbers
for the average number of elements.

In this work we have discussed the relationship betweengtlscillators [10] and
U, (d) quantum groups [11] using the random set concept. We have seen that association of
vectors in a Hilbert space with the random sets, yields a new propettybosons, that we
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call metacolour. Metacolour permits us to count the identichlosons and other bosons
which correspond tg = 1. On the other hand, for the random or quantized random sets,
state vectors are defined by the number of steps used to construct this set rather than the
uncertain number of elements in this set. Furthermore, the vectors corresponding to sets
constructed in different number of steps are orthogonal. This probabilistic view is different
from the classical definition of a state according to the final humber of particles in that
state. Since the concept of quantizing the random sets is rather general, we cannot define
a unique procedure for second and further generation of random sets. However, note that
the procedure defined by (19) and (20) gives a simple and unique answer. We believe that
the properties ofi-bosons related to the metacolour and probability concepts are interesting
and worth deeper investigation.
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